Going against the flow: retention, range limits and invasions in advective environments

نویسندگان

  • James E. Byers
  • James M. Pringle
چکیده

Increasing globalization has spread invasive marine organisms, but it is not well understood why some species invade more readily than others. It is also poorly understood how species’ range limits are set generally, let alone how anthropogenic climate change may disrupt existing species boundaries. We find a quantitative relationship that determines if a coastal species with a benthic adult stage and planktonic larvae can be retained within its range and invade in the direction opposite that of the mean current experienced by the larvae (i.e. upstream). The derivation of the retention criterion extends prior riparian results to the coastal ocean by formulating the criterion as a function of observable oceanic parameters, focusing on species with obligate benthic adults and planktonic larvae, and quantifying the effects of iteroparity and longevity. By placing the solutions in a coastal context, the retention criterion isolates the role of 3 interacting factors that counteract downstream drift and set or advance the upstream edge of an oceanic species’ distribution. First, spawning over several seasons or years enhances retention by increasing the variation in the currents encountered by the larvae. Second, for a given population growth rate, species with a shorter pelagic period are better retained and more able to spread upstream. And third, prodigious larval production improves retention. Long distance downstream dispersal may thus be a byproduct of the many propagules often necessary to ensure local recruitment and persistence of a population in an advective environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relation of density regulation to habitat specialization, evolution of a species' range, and the dynamics of biological invasions.

Prior studies of the evolution of species' niches and ranges have identified the importance of within-population genetic variance, migration rate, and environmental heterogeneity in determining evolutionarily stable patterns of species' range and habitat use. Different combinations of these variables can produce either habitat specialists or generalists and cause either stable range limits or u...

متن کامل

Extended abstract Going against the flow: how marine invasions spread and persist in the face of advection

The factors that set the range limits of species are poorly understood. This uncertainty is even more pronounced for species living in moving fluids such as the coastal ocean. Often, ecologists have the superficial impression that ocean currents are an energetically efficient dispersal mechanism. Although this statement is true, these same currents present a very real challenge to an organism. ...

متن کامل

Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas

Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonst...

متن کامل

The Emergence of Range Limits in Advective Environments

In this paper, we study the asymptotic profile of the steady state of a reactiondiffusion-advection model in ecology proposed in [13, 17]. The model describes the population dynamics of a single species experiencing a uni-directional flow. We show the existence of one or more internal transition layers and determine their locations. Such locations can be understood as the upstream invasion limi...

متن کامل

Predation and the evolutionary dynamics of species ranges.

Gene flow that hampers local adaptation can constrain species distributions and slow invasions. Predation as an ecological factor mainly limits prey species ranges, but a richer array of possibilities arises once one accounts for how predation alters the interplay of gene flow and selection. We extend previous single-species theory on the interplay of demography, gene flow, and selection by inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006